M.p. 236–238°, $[\alpha]_D^{20} + 76^{\circ}$ (CHCl₃); $C_{32}H_{52}O_2$ (M⁺ by MS was 468). On hydrolysis it gave needles (β -amyrin), m.p. 197°. The compound was confirmed by superimposable IR, NMR. UV spectra with authentic acetyl derivative of β -amyrin.

 β -Amyrenone (2·8% yield) crystallized from MeOH. M.p. 177°, $[a]_D + 107\cdot2^\circ$ (CHCl₃). C₃₀H₄₈O (M⁺ 424 by MS). Superimposable IR, NMR, UV spectra with authentic specimen prepared from oxidation of β-amyrin. Lupeol (1·35% yield) crystallized as needles from MeOH. M.p. 216°, $[a]_D^{20} + 27\cdot2^\circ$ (CHCl₃). The MS showed a MW of 426 (C₃₀H₅₀O). Its acetate melted at 215–216°, and its benzoate at 258–259°. When hydrogenated it produced lupanol, m.p. 201°; and the MS had a molecular ion peak at m/e 428. Its oxidation product (lupen-3-one), m.p. 170°, $[a]_D^{20} + 63\cdot5^\circ$. Sitosterol (1·9% yield). M.p. 137–138°, $[a] - 37^\circ$ (CHCl₃). It had an MS characteristic of 3 β-hydroxy steroid (M⁺ 414). Molecular formula C₂₉H₅₀O. Its acetate melted at 127°. This was confirmed by IR, NMR, UV and co-TLC with an authentic sample of sitosterol.

Phytochemistry, 1972, Vol. 11, pp. 3084 to 3085. Pergamon Press. Printed in England.

LIGNAN DIGLUCOSIDES FROM TRACHELOSPERMUM ASIATICUM

S. NISHIBE, S. HISADA and I. INAGAKI

Faculty of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya 467, Japan

(Received 16 June 1972. Accepted 23 June 1972)

Key Word Index—*Trachelospermum asiaticum* var. *intermedium*; Apocynaceae; lignans; matairesinol-4,4′-di-O- β -D-glucopyranoside and nortrachelogenin-4,4′di-O- β -D-glucopyranoside.

We report the isolation of two new lignan glucosides; matairesinol-4,4'-di-O- β -D-glucopyranoside(I) and nortrachelogenin-4,4'-di-O- β -D-glucopyranoside(IV), from the stems of *Trachelospermum asiaticum* Nakai var. *intermedium* Nakai.

The stems (25 kg) were extracted with hot MeOH and the MeOH solution evaporated to small volume, diluted with H_2O and filtered. The filtrate was extracted with successive, light petrol., Et_2O and $CHCl_3$. The aqueous layer was concentrated to syrup and extracted with hot EtOAc. The residue was extracted with $CHCl_3$ -MeOH (2:1). The $CHCl_3$ -MeOH extractive was column chromatographed on activated charcoal and eluted by $MeOH-H_2O$ (49:1), $MeOH-H_2O$ (1:1) and MeOH. The MeOH eluate was concentrated, chromatographed on silica gel column and eluted by $CHCl_3$ -EtOH (3:2). The fraction showing R_f 0·16 spot on TLC [Merk silica gel G, $CHCl_3$ -MeOH (3:1)] was evaporated to give I (51·4 mg).

The residue after CHCl₃-MeOH extraction was column chromatographed on activated charcoal, followed by silica gel column chromatography in a similar manner as CHCl₃-MeOH extractive. The fraction showing R_f 0.09 spot on TLC gave IV (41.7 mg).

I is colorless powder, $C_{32}H_{42}O_{16}$. H_2O , m.p. $104-106^\circ$, $[\alpha]_D^{14}-24\cdot0^\circ$ (c 0.5 in EtOH), λ_{max}^{EtOH} nm (log ϵ) 225 (4·09) 279 (3·65), no shift on alkaline addition, ν_{max}^{KBr} cm⁻¹ 1765 (γ -lactone), and gave octaacetate, $C_{4\epsilon}H_{5\epsilon}O_{23}$, m.p. $88-89^\circ$, λ_{max}^{EtOH} nm (log ϵ) 227 sh (4·11) 279 (3·66), ν_{max}^{KBr} cm⁻¹ 1760(CO), the NMR spectrum (CDCl₃) of which showed signals attributable to two aromatic methoxyls(δ 3·75s) and eight acetyls(δ 2·02s and 2·05s) attached to the glucosyl groups.

Hydrolysis of I with $10\% H_2SO_4$ solution or emulsin gave matairesinol¹ and D-glucose. The permethyl ether prepared by the methylation of I with NaH, DMSO and Me I (Hakomori's method²) afforded only methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside on methanolysis with 3% methanolic —HCl, which was detected by GLC [column; 15% poly-butanediol glycol succinate on Celite 545 (2 m \times 3 mm); column temp., 175° ; carrier gas: N_2 (30 ml/min), on JEOL-JGC-1100 with flame ionization detector].

IV is colorless powder, $C_{32}H_{42}O_{17}$. $1\frac{1}{2}H_2O$, m.p. $137-140^\circ$, $[a]_D^{14}-15\cdot9^\circ$ (c 0·83 in EtOH), λ_{\max}^{EtOH} nm (log ϵ) 224(4·19) 279(3·75), no shift on alkaline addition, ν_{\max}^{KBr} cm⁻¹ 1770(γ -lactone), and gave octaacetate, $C_{46}H_{56}O_{24}$, m.p. 124–125°, λ_{\max}^{EtOH} nm (log ϵ) 226sh(4·15) 279(3·76), ν_{\max}^{KBr} cm⁻¹ 1760(CO), and the NMR spectrum(CDCl₃) of which showed signals attributable to two aromatic methoxyls(δ 3·85s) and eight acetyls(δ 2·00s and 2·05s) attached to the glucosyl groups.

Hydrolysis of IV with 10% H₂SO₄ solution or emulsin gave nortrachelogenin¹ and D-glucose. The permethyl ether of IV afforded only methyl 2,3,4,6-tetra-O-methyl-D-glucopyranoside on methanolysis.

Glucosyl O
$$CH_2$$
 CH_2 $CH_$

The co-occurrence of I and IV with four lignan glucosides; matairesinoside(II), arctini (III), nortracheloside(V) and tracheloside(VI) in the same plant is interested from the biogenetic point of view.

¹ S. Nishibe, S. Hisada and I. Inagaki, Phytochem, 10, 2231 (1971).

² S. HAKOMORI, J. Biochem. 55, 205 (1964).